extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D12)⋊1C22 = D12⋊13D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):1C2^2 | 192,291 |
(C2×D12)⋊2C22 = C24.38D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):2C2^2 | 192,1049 |
(C2×D12)⋊3C22 = C23⋊4D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):3C2^2 | 192,1052 |
(C2×D12)⋊4C22 = C24.41D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):4C2^2 | 192,1053 |
(C2×D12)⋊5C22 = C42⋊11D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):5C2^2 | 192,1084 |
(C2×D12)⋊6C22 = D4⋊5D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):6C2^2 | 192,1113 |
(C2×D12)⋊7C22 = C6.372+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):7C2^2 | 192,1164 |
(C2×D12)⋊8C22 = C6.562+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):8C2^2 | 192,1203 |
(C2×D12)⋊9C22 = C42⋊20D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):9C2^2 | 192,1233 |
(C2×D12)⋊10C22 = C42⋊27D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):10C2^2 | 192,1270 |
(C2×D12)⋊11C22 = D12⋊1D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 24 | 8+ | (C2xD12):11C2^2 | 192,306 |
(C2×D12)⋊12C22 = D4⋊D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):12C2^2 | 192,332 |
(C2×D12)⋊13C22 = Q8⋊5D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 24 | 4+ | (C2xD12):13C2^2 | 192,381 |
(C2×D12)⋊14C22 = (C2×C6)⋊8D8 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):14C2^2 | 192,776 |
(C2×D12)⋊15C22 = 2+ 1+4⋊6S3 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 24 | 8+ | (C2xD12):15C2^2 | 192,800 |
(C2×D12)⋊16C22 = D4×D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):16C2^2 | 192,1108 |
(C2×D12)⋊17C22 = S3×C22≀C2 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 24 | | (C2xD12):17C2^2 | 192,1147 |
(C2×D12)⋊18C22 = C24⋊7D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):18C2^2 | 192,1148 |
(C2×D12)⋊19C22 = C24⋊8D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):19C2^2 | 192,1149 |
(C2×D12)⋊20C22 = C24.45D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):20C2^2 | 192,1151 |
(C2×D12)⋊21C22 = C24.47D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):21C2^2 | 192,1154 |
(C2×D12)⋊22C22 = S3×C4⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):22C2^2 | 192,1163 |
(C2×D12)⋊23C22 = C6.382+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):23C2^2 | 192,1166 |
(C2×D12)⋊24C22 = C4⋊C4⋊26D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):24C2^2 | 192,1186 |
(C2×D12)⋊25C22 = D12⋊21D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):25C2^2 | 192,1189 |
(C2×D12)⋊26C22 = C6.1212+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):26C2^2 | 192,1213 |
(C2×D12)⋊27C22 = C6.682+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):27C2^2 | 192,1225 |
(C2×D12)⋊28C22 = D12⋊10D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):28C2^2 | 192,1235 |
(C2×D12)⋊29C22 = C42⋊25D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):29C2^2 | 192,1263 |
(C2×D12)⋊30C22 = S3×C4⋊1D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):30C2^2 | 192,1273 |
(C2×D12)⋊31C22 = D4.12D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 4+ | (C2xD12):31C2^2 | 192,1311 |
(C2×D12)⋊32C22 = C2×S3×D8 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):32C2^2 | 192,1313 |
(C2×D12)⋊33C22 = C2×Q8⋊3D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):33C2^2 | 192,1318 |
(C2×D12)⋊34C22 = D8⋊15D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 4+ | (C2xD12):34C2^2 | 192,1328 |
(C2×D12)⋊35C22 = S3×C8⋊C22 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 24 | 8+ | (C2xD12):35C2^2 | 192,1331 |
(C2×D12)⋊36C22 = D8⋊5D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 8+ | (C2xD12):36C2^2 | 192,1333 |
(C2×D12)⋊37C22 = D24⋊C22 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 8+ | (C2xD12):37C2^2 | 192,1336 |
(C2×D12)⋊38C22 = D4×C3⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12):38C2^2 | 192,1360 |
(C2×D12)⋊39C22 = D12.32C23 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 8+ | (C2xD12):39C2^2 | 192,1394 |
(C2×D12)⋊40C22 = S3×2+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 24 | 8+ | (C2xD12):40C2^2 | 192,1524 |
(C2×D12)⋊41C22 = D12.39C23 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 8+ | (C2xD12):41C2^2 | 192,1527 |
(C2×D12)⋊42C22 = C2×C4⋊D12 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12):42C2^2 | 192,1034 |
(C2×D12)⋊43C22 = C2×D6⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12):43C2^2 | 192,1046 |
(C2×D12)⋊44C22 = C2×Dic3⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12):44C2^2 | 192,1048 |
(C2×D12)⋊45C22 = C2×C12⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12):45C2^2 | 192,1065 |
(C2×D12)⋊46C22 = D12⋊19D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12):46C2^2 | 192,1168 |
(C2×D12)⋊47C22 = C6.1202+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12):47C2^2 | 192,1212 |
(C2×D12)⋊48C22 = C22×D24 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12):48C2^2 | 192,1299 |
(C2×D12)⋊49C22 = C2×C8⋊D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12):49C2^2 | 192,1305 |
(C2×D12)⋊50C22 = C2×C12⋊7D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12):50C2^2 | 192,1349 |
(C2×D12)⋊51C22 = C24.83D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12):51C2^2 | 192,1350 |
(C2×D12)⋊52C22 = C42⋊10D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12):52C2^2 | 192,1083 |
(C2×D12)⋊53C22 = C24.9C23 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | 4 | (C2xD12):53C2^2 | 192,1307 |
(C2×D12)⋊54C22 = C22×D4⋊S3 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12):54C2^2 | 192,1351 |
(C2×D12)⋊55C22 = C2×D12⋊6C22 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12):55C2^2 | 192,1352 |
(C2×D12)⋊56C22 = C2×C12⋊3D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12):56C2^2 | 192,1362 |
(C2×D12)⋊57C22 = C24.52D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12):57C2^2 | 192,1364 |
(C2×D12)⋊58C22 = C2×D4⋊D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12):58C2^2 | 192,1379 |
(C2×D12)⋊59C22 = C12.C24 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | 4 | (C2xD12):59C2^2 | 192,1381 |
(C2×D12)⋊60C22 = C22×S3×D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12):60C2^2 | 192,1514 |
(C2×D12)⋊61C22 = C2×D4⋊6D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12):61C2^2 | 192,1516 |
(C2×D12)⋊62C22 = C22×Q8⋊3S3 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12):62C2^2 | 192,1518 |
(C2×D12)⋊63C22 = C2×S3×C4○D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12):63C2^2 | 192,1520 |
(C2×D12)⋊64C22 = C2×D4○D12 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12):64C2^2 | 192,1521 |
(C2×D12)⋊65C22 = C6.C25 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | 4 | (C2xD12):65C2^2 | 192,1523 |
(C2×D12)⋊66C22 = C22×C4○D12 | φ: trivial image | 96 | | (C2xD12):66C2^2 | 192,1513 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D12).1C22 = C8⋊5D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).1C2^2 | 192,252 |
(C2×D12).2C22 = C4.5D24 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).2C2^2 | 192,253 |
(C2×D12).3C22 = C12⋊4D8 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).3C2^2 | 192,254 |
(C2×D12).4C22 = C8.8D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).4C2^2 | 192,255 |
(C2×D12).5C22 = C42.264D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).5C2^2 | 192,256 |
(C2×D12).6C22 = C8⋊D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).6C2^2 | 192,271 |
(C2×D12).7C22 = C42.19D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).7C2^2 | 192,272 |
(C2×D12).8C22 = C42.20D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).8C2^2 | 192,273 |
(C2×D12).9C22 = C8.D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).9C2^2 | 192,274 |
(C2×D12).10C22 = C23.43D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).10C2^2 | 192,294 |
(C2×D12).11C22 = C22.D24 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).11C2^2 | 192,295 |
(C2×D12).12C22 = C23.18D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).12C2^2 | 192,296 |
(C2×D12).13C22 = Dic6⋊14D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).13C2^2 | 192,297 |
(C2×D12).14C22 = C4⋊D24 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).14C2^2 | 192,402 |
(C2×D12).15C22 = D12.19D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).15C2^2 | 192,403 |
(C2×D12).16C22 = C42.36D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).16C2^2 | 192,404 |
(C2×D12).17C22 = Dic6⋊8D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).17C2^2 | 192,407 |
(C2×D12).18C22 = C24⋊30D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).18C2^2 | 192,673 |
(C2×D12).19C22 = C24⋊29D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).19C2^2 | 192,674 |
(C2×D12).20C22 = C24⋊2D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).20C2^2 | 192,693 |
(C2×D12).21C22 = C24⋊3D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).21C2^2 | 192,694 |
(C2×D12).22C22 = C6.62- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).22C2^2 | 192,1074 |
(C2×D12).23C22 = C42⋊12D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12).23C2^2 | 192,1086 |
(C2×D12).24C22 = C42.97D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).24C2^2 | 192,1091 |
(C2×D12).25C22 = C42.100D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).25C2^2 | 192,1094 |
(C2×D12).26C22 = C42.104D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).26C2^2 | 192,1099 |
(C2×D12).27C22 = C42⋊19D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12).27C2^2 | 192,1119 |
(C2×D12).28C22 = Q8⋊7D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).28C2^2 | 192,1136 |
(C2×D12).29C22 = C42.136D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).29C2^2 | 192,1144 |
(C2×D12).30C22 = C6.322+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).30C2^2 | 192,1156 |
(C2×D12).31C22 = C6.782- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).31C2^2 | 192,1204 |
(C2×D12).32C22 = C6.612+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12).32C2^2 | 192,1216 |
(C2×D12).33C22 = C6.692+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).33C2^2 | 192,1226 |
(C2×D12).34C22 = C42⋊24D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12).34C2^2 | 192,1242 |
(C2×D12).35C22 = C42.145D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).35C2^2 | 192,1243 |
(C2×D12).36C22 = C42.157D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).36C2^2 | 192,1258 |
(C2×D12).37C22 = C42.164D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).37C2^2 | 192,1269 |
(C2×D12).38C22 = S3×C4.D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 24 | 8+ | (C2xD12).38C2^2 | 192,303 |
(C2×D12).39C22 = D12.3D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 8+ | (C2xD12).39C2^2 | 192,308 |
(C2×D12).40C22 = M4(2).21D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 8+ | (C2xD12).40C2^2 | 192,310 |
(C2×D12).41C22 = D12.5D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 8+ | (C2xD12).41C2^2 | 192,312 |
(C2×D12).42C22 = D12.6D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 8+ | (C2xD12).42C2^2 | 192,313 |
(C2×D12).43C22 = Dic3⋊4D8 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).43C2^2 | 192,315 |
(C2×D12).44C22 = Dic3.SD16 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).44C2^2 | 192,319 |
(C2×D12).45C22 = Dic6⋊2D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).45C2^2 | 192,321 |
(C2×D12).46C22 = C4⋊C4.D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).46C2^2 | 192,323 |
(C2×D12).47C22 = S3×D4⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12).47C2^2 | 192,328 |
(C2×D12).48C22 = C4⋊C4⋊19D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12).48C2^2 | 192,329 |
(C2×D12).49C22 = D6⋊D8 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).49C2^2 | 192,334 |
(C2×D12).50C22 = D6⋊5SD16 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12).50C2^2 | 192,335 |
(C2×D12).51C22 = D4⋊3D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).51C2^2 | 192,340 |
(C2×D12).52C22 = C3⋊C8⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).52C2^2 | 192,341 |
(C2×D12).53C22 = D4⋊S3⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).53C2^2 | 192,344 |
(C2×D12).54C22 = D12⋊3D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).54C2^2 | 192,345 |
(C2×D12).55C22 = D12.D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).55C2^2 | 192,346 |
(C2×D12).56C22 = Dic3⋊7SD16 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).56C2^2 | 192,347 |
(C2×D12).57C22 = (C2×C8).D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).57C2^2 | 192,353 |
(C2×D12).58C22 = Dic6.11D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).58C2^2 | 192,357 |
(C2×D12).59C22 = Q8⋊C4⋊S3 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).59C2^2 | 192,359 |
(C2×D12).60C22 = Q8⋊7(C4×S3) | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).60C2^2 | 192,362 |
(C2×D12).61C22 = C4⋊C4.150D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).61C2^2 | 192,363 |
(C2×D12).62C22 = Q8⋊3D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).62C2^2 | 192,365 |
(C2×D12).63C22 = D6⋊2SD16 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).63C2^2 | 192,366 |
(C2×D12).64C22 = Q8.11D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).64C2^2 | 192,367 |
(C2×D12).65C22 = Q8⋊4D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).65C2^2 | 192,369 |
(C2×D12).66C22 = C3⋊(C8⋊D4) | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).66C2^2 | 192,371 |
(C2×D12).67C22 = Q8⋊3(C4×S3) | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).67C2^2 | 192,376 |
(C2×D12).68C22 = Dic3⋊SD16 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).68C2^2 | 192,377 |
(C2×D12).69C22 = D12.12D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).69C2^2 | 192,378 |
(C2×D12).70C22 = C42⋊5D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 4 | (C2xD12).70C2^2 | 192,384 |
(C2×D12).71C22 = D4.10D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 4 | (C2xD12).71C2^2 | 192,386 |
(C2×D12).72C22 = Dic3⋊8SD16 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).72C2^2 | 192,411 |
(C2×D12).73C22 = D6.4SD16 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).73C2^2 | 192,422 |
(C2×D12).74C22 = C8⋊8D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).74C2^2 | 192,423 |
(C2×D12).75C22 = C24⋊7D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).75C2^2 | 192,424 |
(C2×D12).76C22 = C4.Q8⋊S3 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).76C2^2 | 192,425 |
(C2×D12).77C22 = D24⋊9C4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).77C2^2 | 192,428 |
(C2×D12).78C22 = D12⋊Q8 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).78C2^2 | 192,429 |
(C2×D12).79C22 = D12.Q8 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).79C2^2 | 192,430 |
(C2×D12).80C22 = Dic3⋊5D8 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).80C2^2 | 192,431 |
(C2×D12).81C22 = D6.5D8 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).81C2^2 | 192,441 |
(C2×D12).82C22 = D6⋊2D8 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).82C2^2 | 192,442 |
(C2×D12).83C22 = C2.D8⋊S3 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).83C2^2 | 192,444 |
(C2×D12).84C22 = C8⋊3D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).84C2^2 | 192,445 |
(C2×D12).85C22 = C24⋊C2⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).85C2^2 | 192,448 |
(C2×D12).86C22 = D12⋊2Q8 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).86C2^2 | 192,449 |
(C2×D12).87C22 = D12.2Q8 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).87C2^2 | 192,450 |
(C2×D12).88C22 = C24.19D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 4+ | (C2xD12).88C2^2 | 192,456 |
(C2×D12).89C22 = C24.42D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 4 | (C2xD12).89C2^2 | 192,457 |
(C2×D12).90C22 = (C2×C6).40D8 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).90C2^2 | 192,526 |
(C2×D12).91C22 = C4⋊C4.228D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).91C2^2 | 192,527 |
(C2×D12).92C22 = C4⋊C4.236D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).92C2^2 | 192,562 |
(C2×D12).93C22 = C12⋊7D8 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).93C2^2 | 192,574 |
(C2×D12).94C22 = D4.1D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).94C2^2 | 192,575 |
(C2×D12).95C22 = Q8⋊2D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).95C2^2 | 192,586 |
(C2×D12).96C22 = Q8.6D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).96C2^2 | 192,587 |
(C2×D12).97C22 = C3⋊C8⋊22D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).97C2^2 | 192,597 |
(C2×D12).98C22 = C4⋊D4⋊S3 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).98C2^2 | 192,598 |
(C2×D12).99C22 = C3⋊C8⋊24D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).99C2^2 | 192,607 |
(C2×D12).100C22 = C3⋊C8⋊6D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).100C2^2 | 192,608 |
(C2×D12).101C22 = C42.64D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).101C2^2 | 192,617 |
(C2×D12).102C22 = C42.214D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).102C2^2 | 192,618 |
(C2×D12).103C22 = C42.70D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).103C2^2 | 192,626 |
(C2×D12).104C22 = C42.216D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).104C2^2 | 192,627 |
(C2×D12).105C22 = C12⋊D8 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).105C2^2 | 192,632 |
(C2×D12).106C22 = C42.74D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).106C2^2 | 192,633 |
(C2×D12).107C22 = C12⋊6SD16 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).107C2^2 | 192,644 |
(C2×D12).108C22 = C42.80D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).108C2^2 | 192,645 |
(C2×D12).109C22 = C12.D8 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).109C2^2 | 192,647 |
(C2×D12).110C22 = C42.82D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).110C2^2 | 192,648 |
(C2×D12).111C22 = Q8.8D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 4 | (C2xD12).111C2^2 | 192,700 |
(C2×D12).112C22 = Q8.9D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 4+ | (C2xD12).112C2^2 | 192,701 |
(C2×D12).113C22 = Dic3⋊D8 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).113C2^2 | 192,709 |
(C2×D12).114C22 = C24⋊5D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).114C2^2 | 192,710 |
(C2×D12).115C22 = C24⋊11D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).115C2^2 | 192,713 |
(C2×D12).116C22 = D12⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12).116C2^2 | 192,715 |
(C2×D12).117C22 = Dic3⋊5SD16 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).117C2^2 | 192,722 |
(C2×D12).118C22 = (C3×D4).D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).118C2^2 | 192,724 |
(C2×D12).119C22 = C24.43D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).119C2^2 | 192,727 |
(C2×D12).120C22 = D6⋊6SD16 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12).120C2^2 | 192,728 |
(C2×D12).121C22 = D12⋊7D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).121C2^2 | 192,731 |
(C2×D12).122C22 = C24⋊15D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).122C2^2 | 192,734 |
(C2×D12).123C22 = C24⋊9D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).123C2^2 | 192,735 |
(C2×D12).124C22 = (C2×Q16)⋊S3 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).124C2^2 | 192,744 |
(C2×D12).125C22 = D12.17D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).125C2^2 | 192,746 |
(C2×D12).126C22 = C24.37D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).126C2^2 | 192,749 |
(C2×D12).127C22 = C24.28D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).127C2^2 | 192,750 |
(C2×D12).128C22 = D12⋊18D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 24 | 8+ | (C2xD12).128C2^2 | 192,757 |
(C2×D12).129C22 = M4(2).D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 8+ | (C2xD12).129C2^2 | 192,758 |
(C2×D12).130C22 = D12.39D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 8+ | (C2xD12).130C2^2 | 192,761 |
(C2×D12).131C22 = M4(2).15D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 8+ | (C2xD12).131C2^2 | 192,762 |
(C2×D12).132C22 = (C3×Q8)⋊13D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).132C2^2 | 192,786 |
(C2×D12).133C22 = (C3×D4)⋊14D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).133C2^2 | 192,797 |
(C2×D12).134C22 = 2- 1+4⋊4S3 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 8+ | (C2xD12).134C2^2 | 192,804 |
(C2×D12).135C22 = C6.2- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).135C2^2 | 192,1066 |
(C2×D12).136C22 = C6.112+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).136C2^2 | 192,1073 |
(C2×D12).137C22 = C42.95D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).137C2^2 | 192,1089 |
(C2×D12).138C22 = Dic6⋊24D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).138C2^2 | 192,1112 |
(C2×D12).139C22 = C42.114D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).139C2^2 | 192,1118 |
(C2×D12).140C22 = C42.122D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).140C2^2 | 192,1127 |
(C2×D12).141C22 = C12⋊(C4○D4) | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).141C2^2 | 192,1155 |
(C2×D12).142C22 = Dic6⋊20D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).142C2^2 | 192,1158 |
(C2×D12).143C22 = C6.402+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12).143C2^2 | 192,1169 |
(C2×D12).144C22 = C6.442+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).144C2^2 | 192,1174 |
(C2×D12).145C22 = C6.472+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).145C2^2 | 192,1178 |
(C2×D12).146C22 = C6.482+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12).146C2^2 | 192,1179 |
(C2×D12).147C22 = C4⋊C4.187D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).147C2^2 | 192,1183 |
(C2×D12).148C22 = C6.172- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).148C2^2 | 192,1188 |
(C2×D12).149C22 = D12⋊22D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).149C2^2 | 192,1190 |
(C2×D12).150C22 = C6.532+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12).150C2^2 | 192,1196 |
(C2×D12).151C22 = C6.202- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).151C2^2 | 192,1197 |
(C2×D12).152C22 = C6.222- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).152C2^2 | 192,1199 |
(C2×D12).153C22 = C6.242- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).153C2^2 | 192,1202 |
(C2×D12).154C22 = C6.592+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).154C2^2 | 192,1206 |
(C2×D12).155C22 = S3×C22.D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12).155C2^2 | 192,1211 |
(C2×D12).156C22 = C4⋊C4⋊28D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12).156C2^2 | 192,1215 |
(C2×D12).157C22 = C6.642+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).157C2^2 | 192,1220 |
(C2×D12).158C22 = C6.662+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).158C2^2 | 192,1222 |
(C2×D12).159C22 = C6.672+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).159C2^2 | 192,1223 |
(C2×D12).160C22 = C42.233D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).160C2^2 | 192,1227 |
(C2×D12).161C22 = C42.138D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).161C2^2 | 192,1229 |
(C2×D12).162C22 = S3×C4.4D4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12).162C2^2 | 192,1232 |
(C2×D12).163C22 = C42.237D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).163C2^2 | 192,1250 |
(C2×D12).164C22 = C42.150D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).164C2^2 | 192,1251 |
(C2×D12).165C22 = C42.151D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).165C2^2 | 192,1252 |
(C2×D12).166C22 = C42.155D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).166C2^2 | 192,1256 |
(C2×D12).167C22 = C42.158D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).167C2^2 | 192,1259 |
(C2×D12).168C22 = C42.189D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).168C2^2 | 192,1265 |
(C2×D12).169C22 = C42.163D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).169C2^2 | 192,1268 |
(C2×D12).170C22 = C42⋊28D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12).170C2^2 | 192,1274 |
(C2×D12).171C22 = C42.171D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).171C2^2 | 192,1283 |
(C2×D12).172C22 = C42.240D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).172C2^2 | 192,1284 |
(C2×D12).173C22 = C42.178D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).173C2^2 | 192,1292 |
(C2×D12).174C22 = C42.180D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).174C2^2 | 192,1294 |
(C2×D12).175C22 = D4.11D12 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 4 | (C2xD12).175C2^2 | 192,1310 |
(C2×D12).176C22 = C2×D8⋊S3 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12).176C2^2 | 192,1314 |
(C2×D12).177C22 = C2×S3×SD16 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12).177C2^2 | 192,1317 |
(C2×D12).178C22 = C2×Q8.7D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).178C2^2 | 192,1320 |
(C2×D12).179C22 = C2×Q16⋊S3 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).179C2^2 | 192,1323 |
(C2×D12).180C22 = C2×D24⋊C2 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).180C2^2 | 192,1324 |
(C2×D12).181C22 = D8⋊11D6 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 4 | (C2xD12).181C2^2 | 192,1329 |
(C2×D12).182C22 = C24.C23 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 8+ | (C2xD12).182C2^2 | 192,1337 |
(C2×D12).183C22 = C6.452- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).183C2^2 | 192,1376 |
(C2×D12).184C22 = C6.1452+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | | (C2xD12).184C2^2 | 192,1388 |
(C2×D12).185C22 = C6.1482+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 96 | | (C2xD12).185C2^2 | 192,1393 |
(C2×D12).186C22 = D12.34C23 | φ: C22/C1 → C22 ⊆ Out C2×D12 | 48 | 8+ | (C2xD12).186C2^2 | 192,1396 |
(C2×D12).187C22 = C4×C24⋊C2 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).187C2^2 | 192,250 |
(C2×D12).188C22 = C4×D24 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).188C2^2 | 192,251 |
(C2×D12).189C22 = C42.16D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).189C2^2 | 192,269 |
(C2×D12).190C22 = D24⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).190C2^2 | 192,270 |
(C2×D12).191C22 = D12.31D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12).191C2^2 | 192,290 |
(C2×D12).192C22 = D12.32D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).192C2^2 | 192,292 |
(C2×D12).193C22 = D12⋊14D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).193C2^2 | 192,293 |
(C2×D12).194C22 = C12⋊SD16 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).194C2^2 | 192,400 |
(C2×D12).195C22 = D12⋊3Q8 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).195C2^2 | 192,401 |
(C2×D12).196C22 = D12⋊4Q8 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).196C2^2 | 192,405 |
(C2×D12).197C22 = D12.3Q8 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).197C2^2 | 192,406 |
(C2×D12).198C22 = C2×C2.D24 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).198C2^2 | 192,671 |
(C2×D12).199C22 = C23.28D12 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).199C2^2 | 192,672 |
(C2×D12).200C22 = C23.53D12 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12).200C2^2 | 192,690 |
(C2×D12).201C22 = C23.54D12 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).201C2^2 | 192,692 |
(C2×D12).202C22 = C2×C42⋊7S3 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).202C2^2 | 192,1035 |
(C2×D12).203C22 = C42.276D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).203C2^2 | 192,1036 |
(C2×D12).204C22 = C42.277D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).204C2^2 | 192,1038 |
(C2×D12).205C22 = C2×D6.D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).205C2^2 | 192,1064 |
(C2×D12).206C22 = C42.92D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).206C2^2 | 192,1085 |
(C2×D12).207C22 = C42.93D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).207C2^2 | 192,1087 |
(C2×D12).208C22 = C42.99D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).208C2^2 | 192,1093 |
(C2×D12).209C22 = C42⋊14D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12).209C2^2 | 192,1106 |
(C2×D12).210C22 = D12⋊23D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12).210C2^2 | 192,1109 |
(C2×D12).211C22 = Dic6⋊23D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).211C2^2 | 192,1111 |
(C2×D12).212C22 = D4⋊6D12 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).212C2^2 | 192,1114 |
(C2×D12).213C22 = C42.113D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).213C2^2 | 192,1117 |
(C2×D12).214C22 = C42.117D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).214C2^2 | 192,1122 |
(C2×D12).215C22 = C42.119D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).215C2^2 | 192,1124 |
(C2×D12).216C22 = Q8⋊6D12 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).216C2^2 | 192,1135 |
(C2×D12).217C22 = C42.131D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).217C2^2 | 192,1139 |
(C2×D12).218C22 = C42.132D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).218C2^2 | 192,1140 |
(C2×D12).219C22 = C42.135D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).219C2^2 | 192,1143 |
(C2×D12).220C22 = C6.722- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).220C2^2 | 192,1167 |
(C2×D12).221C22 = C6.162- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).221C2^2 | 192,1187 |
(C2×D12).222C22 = C6.822- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).222C2^2 | 192,1214 |
(C2×D12).223C22 = Dic6⋊10D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).223C2^2 | 192,1236 |
(C2×D12).224C22 = C42⋊22D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12).224C2^2 | 192,1237 |
(C2×D12).225C22 = C42.152D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).225C2^2 | 192,1253 |
(C2×D12).226C22 = C42⋊26D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12).226C2^2 | 192,1264 |
(C2×D12).227C22 = C42.161D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).227C2^2 | 192,1266 |
(C2×D12).228C22 = C22×C24⋊C2 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).228C2^2 | 192,1298 |
(C2×D12).229C22 = C2×C4○D24 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).229C2^2 | 192,1300 |
(C2×D12).230C22 = C2×C8.D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).230C2^2 | 192,1306 |
(C2×D12).231C22 = C6.1082- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).231C2^2 | 192,1392 |
(C2×D12).232C22 = C2×C6.D8 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).232C2^2 | 192,524 |
(C2×D12).233C22 = C4○D12⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).233C2^2 | 192,525 |
(C2×D12).234C22 = C4⋊C4⋊36D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12).234C2^2 | 192,560 |
(C2×D12).235C22 = C4.(C2×D12) | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).235C2^2 | 192,561 |
(C2×D12).236C22 = C4×D4⋊S3 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).236C2^2 | 192,572 |
(C2×D12).237C22 = C42.48D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).237C2^2 | 192,573 |
(C2×D12).238C22 = C4×Q8⋊2S3 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).238C2^2 | 192,584 |
(C2×D12).239C22 = C42.56D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).239C2^2 | 192,585 |
(C2×D12).240C22 = D12⋊16D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12).240C2^2 | 192,595 |
(C2×D12).241C22 = D12⋊17D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).241C2^2 | 192,596 |
(C2×D12).242C22 = D12.36D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12).242C2^2 | 192,605 |
(C2×D12).243C22 = D12.37D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).243C2^2 | 192,606 |
(C2×D12).244C22 = D12.23D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).244C2^2 | 192,616 |
(C2×D12).245C22 = D12.4Q8 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).245C2^2 | 192,625 |
(C2×D12).246C22 = C12⋊2D8 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).246C2^2 | 192,631 |
(C2×D12).247C22 = C12⋊5SD16 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).247C2^2 | 192,642 |
(C2×D12).248C22 = D12⋊5Q8 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).248C2^2 | 192,643 |
(C2×D12).249C22 = D12⋊6Q8 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).249C2^2 | 192,646 |
(C2×D12).250C22 = C2×C12.46D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12).250C2^2 | 192,689 |
(C2×D12).251C22 = M4(2).31D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | 4 | (C2xD12).251C2^2 | 192,691 |
(C2×D12).252C22 = C2×Dic3⋊5D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).252C2^2 | 192,1062 |
(C2×D12).253C22 = C6.82+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).253C2^2 | 192,1063 |
(C2×D12).254C22 = C6.2+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).254C2^2 | 192,1069 |
(C2×D12).255C22 = C42⋊9D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12).255C2^2 | 192,1080 |
(C2×D12).256C22 = C42.188D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).256C2^2 | 192,1081 |
(C2×D12).257C22 = C4×S3×D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12).257C2^2 | 192,1103 |
(C2×D12).258C22 = C42⋊13D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12).258C2^2 | 192,1104 |
(C2×D12).259C22 = C42.228D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).259C2^2 | 192,1107 |
(C2×D12).260C22 = C42.116D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).260C2^2 | 192,1121 |
(C2×D12).261C22 = C4×Q8⋊3S3 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).261C2^2 | 192,1132 |
(C2×D12).262C22 = C42.126D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).262C2^2 | 192,1133 |
(C2×D12).263C22 = C42.133D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).263C2^2 | 192,1141 |
(C2×D12).264C22 = D12⋊20D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12).264C2^2 | 192,1171 |
(C2×D12).265C22 = Dic6⋊22D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).265C2^2 | 192,1192 |
(C2×D12).266C22 = C42.143D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).266C2^2 | 192,1240 |
(C2×D12).267C22 = D12⋊7Q8 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).267C2^2 | 192,1249 |
(C2×D12).268C22 = C42.153D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).268C2^2 | 192,1254 |
(C2×D12).269C22 = D12⋊11D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12).269C2^2 | 192,1276 |
(C2×D12).270C22 = Dic6⋊11D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).270C2^2 | 192,1277 |
(C2×D12).271C22 = D12⋊12D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).271C2^2 | 192,1285 |
(C2×D12).272C22 = D12⋊8Q8 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).272C2^2 | 192,1286 |
(C2×D12).273C22 = D12⋊9Q8 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).273C2^2 | 192,1289 |
(C2×D12).274C22 = C42.177D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).274C2^2 | 192,1291 |
(C2×D12).275C22 = C42.179D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).275C2^2 | 192,1293 |
(C2×D12).276C22 = C22×Q8⋊2S3 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).276C2^2 | 192,1366 |
(C2×D12).277C22 = C2×Q8.11D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).277C2^2 | 192,1367 |
(C2×D12).278C22 = C2×C12.23D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).278C2^2 | 192,1373 |
(C2×D12).279C22 = C6.442- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).279C2^2 | 192,1375 |
(C2×D12).280C22 = C2×Q8.13D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).280C2^2 | 192,1380 |
(C2×D12).281C22 = C6.1462+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 48 | | (C2xD12).281C2^2 | 192,1389 |
(C2×D12).282C22 = (C2×C12)⋊17D4 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).282C2^2 | 192,1391 |
(C2×D12).283C22 = C2×Q8.15D6 | φ: C22/C2 → C2 ⊆ Out C2×D12 | 96 | | (C2xD12).283C2^2 | 192,1519 |
(C2×D12).284C22 = C2×C4×D12 | φ: trivial image | 96 | | (C2xD12).284C2^2 | 192,1032 |
(C2×D12).285C22 = C4×C4○D12 | φ: trivial image | 96 | | (C2xD12).285C2^2 | 192,1033 |
(C2×D12).286C22 = C42.91D6 | φ: trivial image | 96 | | (C2xD12).286C2^2 | 192,1082 |
(C2×D12).287C22 = D12⋊24D4 | φ: trivial image | 96 | | (C2xD12).287C2^2 | 192,1110 |
(C2×D12).288C22 = Q8×D12 | φ: trivial image | 96 | | (C2xD12).288C2^2 | 192,1134 |
(C2×D12).289C22 = D12⋊10Q8 | φ: trivial image | 96 | | (C2xD12).289C2^2 | 192,1138 |
(C2×D12).290C22 = C2×Q8○D12 | φ: trivial image | 96 | | (C2xD12).290C2^2 | 192,1522 |